ZFC 集合論
Zermelo–Fraenkel-choice set theory
集合論とはなにか? 自然數の全體 N を調べる理論を自然數論というのと同じように,集合論とはすべての集合のなす宇宙 V の構造を調べる理論である.この宇宙 V は代數や微積分などあらゆる數學の展開に充分なほど廣大であることが知られてゐる.本ノートは現代數學の標準言語でもある公理的集合論 ZFC を紹介する.ZFC 公理系は第 2 節で說明するが,ZFC をはじめて讀む人のために役立つことを願って,ZFC 公理系のこころを本節にまとめてみた.お役にたてばさいわいである. 公理
外延性の公理 (axiom of extensionality) 二つの集合が等しい事$ A=Bを次で定義する。$ \forall A\forall B(\forall x(x\in A\iff x\in B)\implies A=B) 空集合の公理 (axiom of empty set)
次を滿たす空集合$ \varnothingが存在する。$ \exist\varnothing\forall x(x\notin\varnothing) 對の公理 (axiom of pairing)
$ x,yに就いて次を滿たす對$ \lbrace x,y\rbraceが存在する。$ \forall x\forall y\exist\lbrace x,y\rbrace\forall t(t\in\lbrace x,y\rbrace\iff(t=x\lor t=y))
和集合の公理 (axiom of union)
集合$ Xに就いて次を滿たす和集合$ \bigcup Xが存在する。$ \forall X\exist\bigcup X\forall t(t\in\bigcup X\iff\exist x_{\in X}(t\in x)) $ \bigcup\lbrace x,y\rbraceを$ x\cup yと書く
無限公理 (axiom of infinity)
次を滿たす無限集合$ Aが存在する。$ \exist A(\varnothing\in A\land\forall x_{\in A}(x\cup\lbrace x\rbrace\in A)) 冪集合公理 (axiom of power set)
集合$ Xに就いて次を滿たす冪集合$ 2^Xが存在する。$ \forall X\exist 2^X\forall t(t\in 2^X\iff t\subseteq X) 置換公理圖式 (axiom schema of replacement) 論理式$ \psiに就いての公理圖式。$ \forall x\forall y\forall z((\psi(x,y)\land\psi(x,z))\implies y=z)\implies\forall X\exist A\forall y(y\in A\iff\exist x_{\in X}\psi(x,y)).
分出公理圖式 (axiom of comprehension) 論理式$ \psiに就いての公理圖式。$ Xと$ \lbrace x_{\in X}|\psi(x)\rbraceを自由變數としない論理式$ \psiに就いて次を滿たす集合$ \lbrace x_{\in X}|\psi(x)\rbraceが存在する。$ \forall X\exist\lbrace x_{\in X}|\psi(x)\rbrace\forall x(x\in\lbrace x_{\in X}|\psi(x)\rbrace\iff(x\in X\land\psi(x)))
$ \lbrace x_{\in X}|x\in Y\rbraceを共通部分$ X\cap Yと書く
$ \lbrace x_{\in X}|x\ne x\rbraceは空集合$ \varnothingである 包括原理 (comprehension principle)
正則性公理 (axiom of regularity。基礎の公理 (FA。axiom of foundation)) $ \forall A(A\neq\varnothing\implies\exist x_{\in A}\forall t_{\in A}(t\notin x)).
選擇公理 (axiom of choice。AC) $ \forall X((\varnothing\notin X\land\forall x_{\in X}\forall y_{\in X}(x\neq y\to x\cap y=\varnothing))\implies\exist A\forall x_{\in X}\exist t(x\cap A=\{t\})).
選擇函數 (choice function)
可算選擇公理
從屬選擇公理